Abstract:
Background: The covert or indirect type of aggression has a risk of converting in violent acts and, considering that, it is very important to identify it in order to apply effective preventive measures. In cases of psychotic patients, the risk of becoming violent is harder to predict, as even neuter stimuli may be perceived as threat and trigger aggression. Treating all the psychiatric patients as potential aggressive subjects is not the best preventive measure as only a few of them are aggressive and this measure may further enhance the stigma on mentally ill patients. There is a current need for better understanding of covert aggression and to find objective measures, such as biological markers, that could be indicative of potential violent behavior. In this work, we try to investigate the role of cortisol and oxytocin as potential biomarkers of aggression in patients with psychosis. Material and Methods: We analyzed the level of peripheral oxytocin (pg/mL) and cortisol level (ng/mL) in 28 psychotic patients (they were not on psychotropic treatment at the moment of admission and those with substance abuse or personality disorder were excluded from the study) and correlated it with the intensity of aggression reported by the patient (overt and covert type) using the Overt Covert Aggression Inventory and the level of observed aggression of the patient in the past 7 days (rated by the health care provider) using the Modified Overt Aggression Scale. Results: We found that psychotic patients with a higher level of covert aggression had a lower level of cortisol (61.05 ± 8.04 ng/mL vs. 216.33 ± 12.6.9 ng/mL, p ˂ 0.01) and a higher level of oxytocin (102.87 ± 39.26 vs. 70.01 ± 25.07, p = 0.01) when compared with patients with a lower level of covert aggression. Furthermore, we observed significant negative correlation between cortisol and covert aggression (r = −0.676, p < 0.001) and between oxytocin and covert type of aggression (r = 0.382, p = 0.04). Moreover, we found that a lower level of cortisol together with a higher level of oxytocin are significant predictors of a style of internalized manifestation of aggression, with the predictive model explaining 55% of the variant of the internalized manifestation of aggression (F (2.25) = 17.6, p < 0.001, β = 0.35, R2 = 55.2). We did not find significant correlations between cortisol and overt aggression, and neither between oxytocin and overt aggression. Positive correlations were also found between the overt type of self-reported aggression and overt aggression reported by the rater (r = 0.459, p = 0.01). Conclusions: The importance of a predictive model in understanding covert aggression is imperative and the results of our study show that oxytocin and cortisol warrant to be further investigated in establishing a definitive predictive model for covert aggression.