ALSERepository of Iași University of Life Sciences, ROMANIA

Digital twin earth for climate change adapation: an AI based federated system

Show simple item record

dc.contributor.author Datcu, Mihai
dc.contributor.author Faur, Daniela
dc.contributor.author Mamut, E.
dc.contributor.author Nedelcu, Ion
dc.contributor.author Ionescu, C.
dc.contributor.author Miron, Liviu-Dan
dc.date.accessioned 2025-02-24T09:30:53Z
dc.date.available 2025-02-24T09:30:53Z
dc.date.issued 2023-10-20
dc.identifier.citation Datcu, M., D. Faur, E. Mamut, I. Nedelcu, C. Ionescu, L. Miron. 2023. “Digital Twin Earth for Climate Change Adapation: An AI based Federated System”. IGARSS- 2023 IEEE International Geoscience and Remote Sensing Symposium: 1392-1395, DOI: 10.1109/IGARSS52108.2023.10281684 en_US
dc.identifier.issn 2153-7003
dc.identifier.uri https://ieeexplore.ieee.org/document/10281684
dc.identifier.uri https://repository.iuls.ro/xmlui/handle/20.500.12811/5163
dc.description.abstract Despite the permanent efforts to reduce emissions and achieve carbon neutrality a warmer climate is no longer to be avoided. The European mission „Adaptation to Climate Change" aims to build resilience by 2030 in at least 150 European communities and regions. At the same time, the „Destination Earth" (DestinE) initiative promotes the use of digital twins of the Earth enabling a thorough assessment of climate change by leveraging an accurate digital model of the Earth that can be used to monitor, model, and predict natural and human activity, and to develop and test scenarios for a more sustainable growth. Climate models describe changes at scales of 50km to 150km. However, adaptation measures shall be applied at human activities scales, from 10m to 1km. We propose to achieve this by scale-out novel paradigms of Artificial Intelligence for Earth Observation (AI4EO) including the use of coupled models across domains and spatiotemporal scales. The envisaged R&D work will be carried out in the project Competence Center for Climate Change Digital Twin Earth for forecasts and societal redressement: DTEClimate, in the frame of Romania National Recovery and Resilience Plan. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.rights
dc.rights.uri
dc.subject Digital Twin Earth en_US
dc.subject Artificial Intelligence en_US
dc.subject Earth observation en_US
dc.subject adaptation to climate change en_US
dc.subject adaptation models en_US
dc.subject ecosystems en_US
dc.subject predictive models en_US
dc.subject Europe en_US
dc.title Digital twin earth for climate change adapation: an AI based federated system en_US
dc.type Article en_US
dc.author.affiliation M. Datcu, Daniela Faur, University POLITEHNICA of Bucharest (UPB)
dc.author.affiliation E. Mamut, „Ovidius" University of Constanta (OUC)
dc.author.affiliation I. Nedelcu, Romanian Space Agency (ROSA)
dc.author.affiliation C. Ionescu, National Research and Development Institute for Earth Physics (INFP)
dc.author.affiliation L. Miron, „Ion Ionescu de la Brad", Iaşi University of Life Sciences (IULS)
dc.publicationName IGARSS- 2023 IEEE International Geoscience and Remote Sensing Symposium
dc.volume
dc.issue
dc.publicationDate 2023
dc.startingPage 1392
dc.endingPage 1395
dc.identifier.doi 10.1109/IGARSS52108.2023.10281684


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record