dc.contributor.author |
Datcu, Mihai |
|
dc.contributor.author |
Faur, Daniela |
|
dc.contributor.author |
Mamut, E. |
|
dc.contributor.author |
Nedelcu, Ion |
|
dc.contributor.author |
Ionescu, C. |
|
dc.contributor.author |
Miron, Liviu-Dan |
|
dc.date.accessioned |
2025-02-24T09:30:53Z |
|
dc.date.available |
2025-02-24T09:30:53Z |
|
dc.date.issued |
2023-10-20 |
|
dc.identifier.citation |
Datcu, M., D. Faur, E. Mamut, I. Nedelcu, C. Ionescu, L. Miron. 2023. “Digital Twin Earth for Climate Change Adapation: An AI based Federated System”. IGARSS- 2023 IEEE International Geoscience and Remote Sensing Symposium: 1392-1395, DOI: 10.1109/IGARSS52108.2023.10281684 |
en_US |
dc.identifier.issn |
2153-7003 |
|
dc.identifier.uri |
https://ieeexplore.ieee.org/document/10281684 |
|
dc.identifier.uri |
https://repository.iuls.ro/xmlui/handle/20.500.12811/5163 |
|
dc.description.abstract |
Despite the permanent efforts to reduce emissions and achieve carbon neutrality a warmer climate is no longer to be avoided. The European mission „Adaptation to Climate Change" aims to build resilience by 2030 in at least 150 European communities and regions. At the same time, the „Destination Earth" (DestinE) initiative promotes the use of digital twins of the Earth enabling a thorough assessment of climate change by leveraging an accurate digital model of the Earth that can be used to monitor, model, and predict natural and human activity, and to develop and test scenarios for a more sustainable growth. Climate models describe changes at scales of 50km to 150km. However, adaptation measures shall be applied at human activities scales, from 10m to 1km. We propose to achieve this by scale-out novel paradigms of Artificial Intelligence for Earth Observation (AI4EO) including the use of coupled models across domains and spatiotemporal scales. The envisaged R&D work will be carried out in the project Competence Center for Climate Change Digital Twin Earth for forecasts and societal redressement: DTEClimate, in the frame of Romania National Recovery and Resilience Plan. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
IEEE |
en_US |
dc.rights |
|
|
dc.rights.uri |
|
|
dc.subject |
Digital Twin Earth |
en_US |
dc.subject |
Artificial Intelligence |
en_US |
dc.subject |
Earth observation |
en_US |
dc.subject |
adaptation to climate change |
en_US |
dc.subject |
adaptation models |
en_US |
dc.subject |
ecosystems |
en_US |
dc.subject |
predictive models |
en_US |
dc.subject |
Europe |
en_US |
dc.title |
Digital twin earth for climate change adapation: an AI based federated system |
en_US |
dc.type |
Article |
en_US |
dc.author.affiliation |
M. Datcu, Daniela Faur, University POLITEHNICA of Bucharest (UPB) |
|
dc.author.affiliation |
E. Mamut, „Ovidius" University of Constanta (OUC) |
|
dc.author.affiliation |
I. Nedelcu, Romanian Space Agency (ROSA) |
|
dc.author.affiliation |
C. Ionescu, National Research and Development Institute for Earth Physics (INFP) |
|
dc.author.affiliation |
L. Miron, „Ion Ionescu de la Brad", Iaşi University of Life Sciences (IULS) |
|
dc.publicationName |
IGARSS- 2023 IEEE International Geoscience and Remote Sensing Symposium |
|
dc.volume |
|
|
dc.issue |
|
|
dc.publicationDate |
2023 |
|
dc.startingPage |
1392 |
|
dc.endingPage |
1395 |
|
dc.identifier.doi |
10.1109/IGARSS52108.2023.10281684 |
|