Abstract:
The carapace morphology of tortoises is a crucial characteristic used for species identification, with features such as shell shape, roughness, and color patterns varying among species. Understanding this morphological diversity is valuable not only for taxonomic classification but also for more specialized clinical approaches. This study investigated the morphological differences in the shells of Leopard tortoises (Stigmochelys pardalis), African spurred tortoises (Centrochelys sulcata), and Greek tortoises (spur-thighed tortoises; Testudo graeca) raised in captivity. Using 3D scanners, the carapaces were modeled, and a 3D geometric morphometric method was employed to analyze shape variations and dimensional features, with landmarks applied automatically. Among the species studied, African spurred tortoises had the largest carapace size. Principal component analysis (PCA) identified PC1 and PC3 as critical factors in distinguishing between species based on morphological characteristics. Positive PC1 values, associated with a shorter carapace height, indicated a flatter or more compact shell shape. A higher PC3 value corresponded to a raised shape at the back of the shell, while a lower PC3 value indicated a raised shape at the front. Specifically, Leopard tortoises exhibited a higher carapace shape than the other species, while African spurred tortoises had shorter carapaces. An allometric effect was observed in the carapaces, where smaller specimens tended to be proportionately higher-domed, whereas larger shells displayed a lower height in shape. These findings highlight the significance of shape variations in tortoise shells, which emerge during adaptation and have important implications for taxonomy and clinical practice. Such differences should be carefully considered in veterinary care and species identification.