dc.contributor.author |
Suflet, Dana-Mihaela |
|
dc.contributor.author |
Popescu, Irina |
|
dc.contributor.author |
Stanciu, Magdalena-Cristina |
|
dc.contributor.author |
Rîmbu, Cristina-Mihaela |
|
dc.date.accessioned |
2024-10-09T07:28:13Z |
|
dc.date.available |
2024-10-09T07:28:13Z |
|
dc.date.issued |
2024-06-27 |
|
dc.identifier.citation |
Suflet, Dana M., Irina Popescu, Magdalena-Cristina Stanciu, and Cristina Mihaela Rimbu. 2024. "Antimicrobial Hydrogels Based on Cationic Curdlan Derivatives for Biomedical Applications" Gels 10, no. 7: 424. https://doi.org/10.3390/gels10070424 |
en_US |
dc.identifier.uri |
https://www.mdpi.com/2310-2861/10/7/424 |
|
dc.identifier.uri |
https://repository.iuls.ro/xmlui/handle/20.500.12811/4593 |
|
dc.description.abstract |
Hydrogels based on biocompatible polysaccharides with biological activity that can slowly release an active principle at the wound site represent promising alternatives to traditional wound dressing materials. In this respect, new hydrogels based on curdlan derivative with 2-hydroxypropyl dimethyl octyl ammonium groups (QCurd) and native curdlan (Curd) were obtained at room temperature by covalent cross-linking using a diepoxy cross-linking agent. The chemical structure of the QCurd/Curd hydrogels was investigated by Fourier transform infrared spectroscopy (FTIR) spectroscopy. Scanning electron microscopy (SEM) revealed well-defined regulated pores with an average diameter between 50 and 75 μm, and hydrophobic micro-domains of about 5 μm on the pore walls. The high swelling rate (21–24 gwater/ghydrogel) and low elastic modulus values (7–14 kPa) make them ideal for medical applications as wound dressings. To evaluate the possible use of the curdlan-based hydrogels as active dressings, the loading capacity and release kinetics of diclofenac, taken as a model drug, were studied under simulated physiological skin conditions. Several mathematical models have been applied to evaluate drug transport processes and to calculate the diffusion coefficients. The prepared QCurd/Curd hydrogels were found to have good antibacterial properties, showing a bacteriostatic effect after 48 h against S. aureus, MRSA, E. coli, and P. aeruginosa. The retarded drug delivery and antimicrobial properties of the new hydrogels support our hypothesis that they are candidates for the manufacture of wound dressings. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
MDPI |
en_US |
dc.rights |
CC BY 4.0 |
|
dc.rights.uri |
https://creativecommons.org/licenses/by/4.0/deed.en |
|
dc.subject |
curdlan |
en_US |
dc.subject |
cationic curdlan |
en_US |
dc.subject |
hydrogels |
en_US |
dc.subject |
drug delivery system |
en_US |
dc.title |
Antimicrobial Hydrogels Based on Cationic Curdlan Derivatives for Biomedical Applications |
en_US |
dc.type |
Article |
en_US |
dc.author.affiliation |
Dana M. Suflet, Irina Popescu, Magdalena-Cristina Stanciu, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania |
|
dc.author.affiliation |
Cristina Mihaela Rimbu, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, Mihail Sadoveanu Alley
8, 707027 Iasi, Romania |
|
dc.publicationName |
Gels |
|
dc.volume |
10 |
|
dc.issue |
7 |
|
dc.publicationDate |
2024 |
|
dc.identifier.eissn |
2310-2861 |
|
dc.identifier.doi |
https://doi.org/10.3390/gels10070424 |
|