| dc.contributor.author | Agop, Ștefana | |
| dc.contributor.author | Păun, Vladimir-Alexandru | |
| dc.contributor.author | Ștefan, Gavril | |
| dc.contributor.author | Petrescu, Tudor-Cristian | |
| dc.contributor.author | Agop, Maricel | |
| dc.contributor.author | Păun, Viorel-Puiu | |
| dc.date.accessioned | 2024-06-20T10:27:12Z | |
| dc.date.available | 2024-06-20T10:27:12Z | |
| dc.date.issued | 2021 | |
| dc.identifier.citation | Agop, Stefana, Vladimir-Alexandru Paun, Gavril Ștefan, Tudor–Cristian Petrescu, Maricel Agop, Viorel-Puiu Paun. 2021. ”Implicit chaos in complex systems in the form of period doubling through harmonic mappings”. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 83 (3): 239-248. | en_US |
| dc.identifier.issn | 2286-3672 | |
| dc.identifier.uri | https://repository.iuls.ro/xmlui/handle/20.500.12811/4220 | |
| dc.identifier.uri | https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full900_974869.pdf | |
| dc.description.abstract | In the Multifractal Theory of Motion, in the form of Schrödinger – type “regimes”, non – linear behaviors of a complex system are analysed. Then, in the non - stationary case, symmetries of SL(2R)-type for structural units of any complex system can be highlighted. These become functional, for example in the form of period doubling "synchronization mode". This “mode” can mime a possible scenario toward chaos (period doubling scenario), without concluding in chaos (non – manifest chaos). | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Bucharest: Politehnica Press | en_US |
| dc.rights | ||
| dc.rights.uri | ||
| dc.subject | chaos | en_US |
| dc.subject | complex systems | en_US |
| dc.subject | fractal analysis | en_US |
| dc.subject | multifractal | en_US |
| dc.subject | Group invariances | en_US |
| dc.title | Implicit chaos in complex systems in the form of period doubling through harmonic mappings | en_US |
| dc.type | Article | en_US |
| dc.author.affiliation | Ștefana Agop, Gavril Ștefan,Department of Agroeconomy, Iasi University of Life Sciences, Romania | |
| dc.author.affiliation | Vladimir-Alexandru Păun, Five Rescue Research Laboratory, 35 Quai d’Anjou, 75004, Paris, France | |
| dc.author.affiliation | Tudor-Cristian Petrescu, Department of Structural Mechanics, Gheorghe Asachi Technical University of Iasi, Romania | |
| dc.author.affiliation | Maricel Agop, Department of Physics, Gheorghe Asachi Technical University of Iasi, Romania | |
| dc.author.affiliation | Viorel-Puiu Păun, Physics Department, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania | |
| dc.author.affiliation | Maricel Agop,Viorel-Puiu Păun, Romanian Scientists Academy, Bucharest, Romania | |
| dc.publicationName | UPB Scientific Bulletin, Series A: Applied Mathematics and Physics | |
| dc.volume | 83 | |
| dc.issue | 3 | |
| dc.publicationDate | 2021 | |
| dc.startingPage | 239 | |
| dc.endingPage | 248 | |
| dc.identifier.eissn | 1223-7027 |