dc.contributor.author |
Agop, Ștefana |
|
dc.contributor.author |
Păun, Vladimir-Alexandru |
|
dc.contributor.author |
Ștefan, Gavril |
|
dc.contributor.author |
Petrescu, Tudor-Cristian |
|
dc.contributor.author |
Agop, Maricel |
|
dc.contributor.author |
Păun, Viorel-Puiu |
|
dc.date.accessioned |
2024-06-20T10:27:12Z |
|
dc.date.available |
2024-06-20T10:27:12Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Agop, Stefana, Vladimir-Alexandru Paun, Gavril Ștefan, Tudor–Cristian Petrescu, Maricel Agop, Viorel-Puiu Paun. 2021. ”Implicit chaos in complex systems in the form of period doubling through harmonic mappings”. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 83 (3): 239-248. |
en_US |
dc.identifier.issn |
2286-3672 |
|
dc.identifier.uri |
https://repository.iuls.ro/xmlui/handle/20.500.12811/4220 |
|
dc.identifier.uri |
https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full900_974869.pdf |
|
dc.description.abstract |
In the Multifractal Theory of Motion, in the form of Schrödinger – type “regimes”, non – linear behaviors of a complex system are analysed. Then, in the non - stationary case, symmetries of SL(2R)-type for structural units of any complex system can be highlighted. These become functional, for example in the form of period doubling "synchronization mode". This “mode” can mime a possible scenario toward chaos (period doubling scenario), without concluding in chaos (non – manifest chaos). |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Bucharest: Politehnica Press |
en_US |
dc.rights |
|
|
dc.rights.uri |
|
|
dc.subject |
chaos |
en_US |
dc.subject |
complex systems |
en_US |
dc.subject |
fractal analysis |
en_US |
dc.subject |
multifractal |
en_US |
dc.subject |
Group invariances |
en_US |
dc.title |
Implicit chaos in complex systems in the form of period doubling through harmonic mappings |
en_US |
dc.type |
Article |
en_US |
dc.author.affiliation |
Ștefana Agop, Gavril Ștefan,Department of Agroeconomy, Iasi University of Life Sciences, Romania |
|
dc.author.affiliation |
Vladimir-Alexandru Păun, Five Rescue Research Laboratory, 35 Quai d’Anjou, 75004, Paris, France |
|
dc.author.affiliation |
Tudor-Cristian Petrescu, Department of Structural Mechanics, Gheorghe Asachi Technical University of Iasi, Romania |
|
dc.author.affiliation |
Maricel Agop, Department of Physics, Gheorghe Asachi Technical University of Iasi, Romania |
|
dc.author.affiliation |
Viorel-Puiu Păun, Physics Department, Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania |
|
dc.author.affiliation |
Maricel Agop,Viorel-Puiu Păun, Romanian Scientists Academy, Bucharest, Romania |
|
dc.publicationName |
UPB Scientific Bulletin, Series A: Applied Mathematics and Physics |
|
dc.volume |
83 |
|
dc.issue |
3 |
|
dc.publicationDate |
2021 |
|
dc.startingPage |
239 |
|
dc.endingPage |
248 |
|
dc.identifier.eissn |
1223-7027 |
|