Abstract:
Chitosan based nanofibers are emerging biomaterials with a plethora of applications, especially in medicine and healthcare. Herein, binary quaternized chitosan/chitosan fibers are reported for the first time. Their preparation strategy consisted in the electrospinning of ternary chitosan/quaternized chitosan/poly(ethylene oxide) solutions followed by the selective removal of poly(ethylene oxide). Their morphology and performances were systematically investigated and discussed in detail. It was found that the fibers had reversible water vapor adsorption/desorption and showed swelling degrees similar to commercial wound dressings. They presented good mechanical properties and the content of quaternized chitosan modulated their bioadhesion, mucoadhesion and biodegradation rate and conferred them strong antimicrobial activity. Tests on normal human fibroblasts confirmed their safely use in contact with tissues and the biocompatibility investigation on rats showed no harmful effect when subcutaneous implanted. All these proved the binary quaternized chitosan/chitosan fibers as bioactive materials suitable for tissue regeneration, wound healing and drug delivery systems.