ALSERepository of Iași University of Life Sciences, ROMANIA

Evaluation of Poly(vinyl alcohol)–Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery

Show simple item record

dc.contributor.author Serbezeanu, Diana
dc.contributor.author Iftime, Manuela-Maria
dc.contributor.author Ailiesei, Gabriela-Liliana
dc.contributor.author Ipate, Alina-Mirela
dc.contributor.author Bargan, Alexandra
dc.contributor.author Vlad Bubulac, Tăchiță
dc.contributor.author Rîmbu, Cristina-Mihaela
dc.date.accessioned 2024-03-28T16:17:04Z
dc.date.available 2024-03-28T16:17:04Z
dc.date.issued 2023-08-14
dc.identifier.issn 2310-2861
dc.identifier.uri https://www.mdpi.com/2310-2861/9/8/655
dc.identifier.uri https://repository.iuls.ro/xmlui/handle/20.500.12811/3708
dc.description.abstract In recent years, multidrug-resistant bacteria have developed the ability to resist multiple antibiotics, limiting the available options for effective treatment. Raising awareness and providing education on the appropriate use of antibiotics, as well as improving infection control measures in healthcare facilities, are crucial steps to address the healthcare crisis. Further, innovative approaches must be adopted to develop novel drug delivery systems using polymeric matrices as carriers and support to efficiently combat such multidrug-resistant bacteria and thus promote wound healing. In this context, the current work describes the use of two biocompatible and non-toxic polymers, poly(vinyl alcohol) (PVA) and xanthan gum (XG), to achieve hydrogel networks through cross-linking by oxalic acid following the freezing/thawing procedure. PVA/XG-80/20 hydrogels were loaded with different quantities of neomycin sulfate to create promising low-class topical antibacterial formulations with enhanced antimicrobial effects. The inclusion of neomycin sulfate in the hydrogels is intended to impart them with powerful antimicrobial properties, thereby facilitating the development of exceptionally efficient topical antibacterial formulations. Thus, incorporating higher quantities of neomycin sulfate in the PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations yielded promising cycling characteristics. These formulations exhibited outstanding removal efficiency, exceeding 80% even after five cycles, indicating remarkable and consistent adsorption performance with repeated use. Furthermore, both PVA/XG-80/20-2 and PVA/XG-80/20-3 formulations outperformed the drug-free sample, PVA/XG-80/20, demonstrating a significant enhancement in maximum compressive stress. en_US
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.rights Attribution 4.0 International
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.en
dc.subject antimicrobial activity en_US
dc.subject drug delivery systems en_US
dc.subject mechanical properties en_US
dc.subject neomycin en_US
dc.subject PVA/XG hydrogels en_US
dc.title Evaluation of Poly(vinyl alcohol)–Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery en_US
dc.type Article en_US
dc.author.affiliation Diana Serbezeanu, Manuela Maria Iftime, Gabriela-Liliana Ailiesei, Alina-Mirela Ipate, Alexandra Bargan, Tachita Vlad-Bubulac, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
dc.author.affiliation Cristina Mihaela Rîmbu, Department of Public Health, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
dc.publicationName GEls
dc.volume 9
dc.issue 8
dc.publicationDate 2023
dc.identifier.doi https://doi.org/10.3390/gels9080655


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International