Abstract:
In natural environments, the aquatic organisms are exposed to complex mixtures of chemicals which may originate from natural sources or from anthropogenic activities. In this context, the aim of the study was to assess the potential effects that might occur when aquatic organisms are simultaneously exposed to multiple chemicals. For that, we have studied the acute effects of cadmium (0.2 μg L−1), nickel (10 μg L−1) and deltamethrin (2 μg L−1) as individual toxicants and as mixture on the behavioral responses, oxidative stress (SOD and GPx), body electrolytes and trace metals profiles of zebrafish (Danio rerio). So far the scientific literature did not report about the combined effects of pesticides and toxic metals on zebrafish behavior using a 3D tracking system. Compared with other studies, in the present paper we investigated the acute effects of two heavy metals associated with a pesticide on zebrafish, in the range of environmentally relevant concentrations. Thus, the environmental concentrations of cadmium and nickel in three rivers affected by urban activities and one river with protected areas as background control were measured. The observations that resulted in our study demonstrated that deltamethrin toxicity was significantly decreased in some of the behavioral variables and oxidative stress when combined with Cdsingle bondNi mixture. Consequently, our study supports previous works concerning the combined toxicity of environmental chemicals since their simultaneous presence in the aqueous environment may lead to higher or lower toxicological effects on biota than those reported from a single pollutant. Therefore, the evaluation of toxic effects of a single contaminant does not offer a realistic estimate of its impact against aqueous ecosystems. This study also supports the idea that the interactions between different chemical compounds which do not exceed the maximum permitted limits in environment may have benefits for aquatic life forms or be more toxic.